What Are Black Holes?
What Is a Black Hole?
Black holes refer to a region of space that exhibits such strong gravitational force that nothing (not even light) can escape from its grasp. But what exactly are black holes? Where do they come from? Finally, and perhaps most importantly, why are they important in understanding our overall universe? This article, through an analysis of current theories and research, explores the concept of black holes in an attempt to better understand not only their origins, but also their place and importance within the universe at large. Although theories pertaining to black holes remain limited, given the lack of data and empirical observation of these space entities, this article aims to provide its readers with a fundamental understanding of current hypotheses that dominate the scientific community today.
Black Holes Defined
Although the name “black hole” gives rise to the concept of “nothingness,” black holes are anything but empty. Scientists believe that the holes contain tremendous amounts of matter, and may result from the death of massive stars. Once a massive star dies, implodes, and undergoes a supernova explosion, it is believed that they sometimes leave behind a small, but dense remnant core that is approximately three times the mass of our Sun (science.nasa.gov). The result of such mass (in a relatively small space) is an overwhelming force of gravity that overcomes all objects that surround it (including light), creating the appearance of a black hole.
The concept of black holes is nothing new within the scientific community, as scientists and astronomers from the Eighteenth Century (most notably, John Michell) proposed that such objects may exist in our universe. In 1784, Michell argued that black holes were likely the result of Stars whose diameter exceeded the diameter of our Sun by a factor of 500. He also correctly observed that the holes could potentially be observed through an analysis of their gravitational pull on nearby celestial bodies. Michell remained perplexed, however, over how a supermassive object could effectively bend light. Albert Einstein’s theory of “general relativity” (1915) later helped demonstrate how this was possible. Expanding on Einstein’s theory, German physicist and astronomer Karl Schwarzschild, helped develop the first modern version of what a black hole was in 1915, arguing that “it was possible for mass to be squeezed into an infinitely small point” that would not only bend spacetime (due to its incredible gravitational pull), but would also prevent “massless photons of light” from escaping its grasp as well (sciencealert.com). Despite his theories, however, credit for the term “Black Hole” lies with physicist John Wheeler, who first proposed the name in December of 1967.